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METHOD OF CANONICAL ELEMENTS FOR
MODELING TRANSFER PROCESSES IN MULTIPLY
CONNECTED REGIONS OF AN ARBITRARY SHAPE

N. I. Nikitenko and Yu. N. Kol’chik UDC 536.24

A refined method of canonical elements for calculation of processes of heat and mass transfer and
deformation in multiply connected bodies of a complex shape with curvilinear boundaries is stated. Results
of comparison of the data of numerical experiments with accurate analytical solutions are presented.

Development of numerical simulation and even wider use of it in solving urgent scientific-engineering
problems requires the creation of universal, efficient, and, at the same time, rather simple calculation methods and
algorithms with specified accuracy for transfer processes in multiply connected regions of an arbitrary shape with
variable thermophysical characteristics and arbitrary boundary and initial conditions.

In [1, 2], a new approach to the solution of partial differential equations for regions of an arbitrary shape
is suggested. The approach is based on approximation of the initial differential equation by a balance equation for
an element of a canonical shape that is constructed on a nonuniform difference grid. In this case, difference
derivatives of the sought scalar function along the coordinate axes are determined as projections of its gradient,
which in turn is expressed in terms of derivatives along some axes passing through the nodes of the nonuniform
grid. This approach, called the method of canonical elements, has certain advantages with respect to simplicity of
algorithms and accuracy of the solution as compared to known numerical methods usually used for these problems,
in particular, the method of finite elements, which is based on the search for an extremum of the functional
corresponding to the initial differential equation.

In what follows we consider the problems of automation of construction of nonuniform difference grids for
multiply connected regions of an arbitrary shape, a difference grid of clevated accuracy for the method of canonical
elements, and the results of solution of some problems of transfer of energy and momentum in multiply connected
deformable bodies with curvilinear boundaries.

The method of canonical elements can be implemented, generally speaking, on’ arbitrary nonuniform grids.
However, to simplify the algorithms and to make them more universal and also to provide the possibility of
automated construction of nonuniform difference grids, it is expedient to use regularized grids. Regularization of
grids can be performed, in particular, by positioning nodal points on the walls of coordinate surfaces and straight
lines. For a simply connected body in Cartesian coordinates, this grid is described by the equations

zj=zj_1+hzj_], i=0,1,.,7J, zp=2z, z;=z;

ymj=ym—1'j+hym_1'j’ m=0a1a~">M(j)’ y01=yja yMj=y/;

Ximj = Xi1,mj + zhx.i_l,mj, i=0,1,..,1(m,)), Xomj = Xmj> Ximj = Xmj>

fy=tpy F hy s n=1,2 ey Ry >0, 15=0.
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Here 2, y,, x;nj are the minimum values of the coordinates, respectively: z for points of the region, y for
points of the cross section z and x for points of the intersection line of the coordinate surfaces z = z; and y= Ymjh
z, y], j are the maximum values of the coordinates for the same elements of the region.

The quasi-uniform grid [1], which may be used in solving many practical problems, is the simplest case
of a regularized grid. For this grid hzj = const, hymj = hyj # f(m), himj = hmj # f(i), and hm = const.

An analysis of different versions of nonuniform difference grids in multiply connected systems of a complex
configuration showed that from the point of view of simplicity of the algorithm of solution, its universality, and
automation of construction of grids it is expedient to use quasi-uniform grids. By virtue of this a method is suggested
which presuposes conventional division of a multiply connected region into a set of simply connected subregions.
Boundary nodal points of each of them pertain only to this subregion. They tie on the outer and inner boundaries
of the body or are at a distance of a mesh width along the coordinate axis from the node pertaining to a neighboring
subregion.

In numerical simulation of transfer processes in regions of complex configuration the problem of
approximation of partial derivatives on nonuniform grids is knotty. It is shown in |2] that in the orthogonal
coordinates x, y the derivatives dW/dx, dW/dy are related to the derivatives dW/dx’, dW/3y along arbitrarily
directed axes x' and y', which make with the axis x the angles (x, x') and (x, ¥, respectively, by the relations

ow 1.4 1 aw

W _ (W L W 1) /lctan (x, x) + ctan (x, ¥) 1, (1)
" (ax s oy Sm(x,y)]/can(v Y) + ctan (x, y)

ow 1.4 1 6W

— = - | - t + tan (x, ], (2
ay [6x cos (x, x) ay cos (x, y)]/[an ( X) x y)

" The expression for the projection of the gradient of the function W on the axis z in terms of the value of
the derivatives along the axes x, y, and z' is determined by

W _ M—coa (z x)—W—cos (z y)—W /cos (z',z). 3)
Jz dz dx Ay
For a regularized grid Eq. (1) passes over to the equality W/ dx = dW/dx and (2) takes the form
w
W (W gy L) @
dy 0x dy sin(x,y)

The derivatives of the function w along the normal lines to the edges x = x;, 5 X = Xi—0.5,mp ¥ =

Yim+057 ¥ = Yim-057 2= Zimj+0.5 % = Zimj-0.5 of a canonical clement (a parallelepiped) constructed by the

coordinate surfaces in the vicinity of the inner nodal point (xlmj, Ymjr % z) are determined as follows. The derivative
dW/ dx with respect to the coordinate x at the edge x = x;,¢ 5 mj is determined by a symmeitric difference relation
W Wi = Winy (5)

x,i+0.5,mj hximj

with an error of approximation of the order of H

— The difference expression for the derivative dW/dx at the

nodal point (xlmj, Ymjo zj) with an approximation error of the same order, which is based on (5), has the form
_ 6
Wx,imj - axWx,i+0.5,mj ( x) x,i—0.5,mj > ( )
where a,= hx i—1 m// (hx imj + h,\ i1 mj)

In [2] the derivative dW/ 9y with respect to the coordinate y at the edge y = ¥; .05, j is determined in
terms of the derivatives W/ dx and 9 W/ dy by a difference equation which approximates Eq. (4). In this case the

axis y with the origin at the point (xl.mj, Ymjr zj) passes through the nodal point (xy ,u+1,/> ¥, L zj) lying on the
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coordinate straight line y =y, +1,/ at the smallest distance from the surface x = Kimj The error of this method of
determination of the derivative dW/dy has an order hi + hi at the point of intersection of the edge y = Yim+0.5,
of the canonical element by the axis y'. The error of approximation of the derivative 9°W/ ay2 for the point
(ximj, Ymjo zj) turns out to be proportional to the distance of the point of intersection from the coordinate plane x =
Ximjr This error is substantial with a large degree of nonuniformity of the difference grid.

The drawback mentioned can be eliminated in the following way. On the coordinate straight line y =
Ym+1,; WO neighboring nodal points & 1, 7 Yma1jp zj) and (x; Lmet Ymer s zj) are selected, which lie closest
to the coordinate surface x = Ximje Identification of these points comes down to sceking an integral value of
proceeding from the requirement of satisfaction of the condition

Lxomat = Ximil + 1%t e = Xl = min () Xg iy ;= Xy | +

+ Xyl ma1, — Ximl) for s=1,2,..,1~1). (7

Then difference approximations of Eq. (4) are constructed for two cases. In the first, the axis y with the
origin at the point (xl-mj, Ymjs zj) passes through the nodal point () Hm L Yt o zj), and in the second through
the point (x; tLmt 1 Ymlp Zj)' These approximations can be presented in the form

W  Wemir; = Wi N Pymatj Wimi = Wit mj ®)
yim+0.5,/ — hym‘ h. . h, . ] s
./ ymy X, i—1,mj

»

W _Wesimr1,i = Wimi Bemsery Wirtm = Wing 9)
yi,m+0.5,; — h. . h, . R s ’
ymj ymj ximj
where Ay 0= X T X a1 Bomat T X v Lmer ) T Kimy

Approximating equations (8) and (9) are first multiplied by constant quantities subject to determination
and then they are summed. The values of the constants are found from the condition that the error of approximation
of the expression obtained as a result of summation for determination of the derivative aW/dy at the point

(v, ¥ ,z)of theedgey=1y of the considered canonical clement be on the order of A2, . + A% . As a
imj* “m+0.5° <} m+0.5 ximy ymj
result we find that
_ Wemarj = Wim) bemaj ¥ Wisimery =~ Wim) Bomsery Aemerj Pomery (10)
Wy,i,m+0.5,j - h h’ 12” - 2h . Wxx,imj »
ymj< x,m+1,j + x,m+l,j) yny
where
W _ 2 Wisrmi = Wimg — Wimi = Wie) mj ()
XXy hximj + hx,i+l,mj hx,i+l,mj hximj

By expanding the functions entering the formula into a Taylor series with respect to the central point of
the edge y =y, .05 ; of the considered canonical element, we see easily that thc error of approximation for it is

on the order of A + hg. It should be noted that when A’ =0 or A 0, i.c., when one of the points

x,m+1,j xomH1,j s
(xl."’mﬂ,j, Y1 o zj) or (xi"+1,m+1,j’ Y1 jp 2 lies in the plane x = Ximjo formula (10) becomes a symmetric
difference expression similar to (5), which ailso has a second order of accuracy with respect to the mesh width of
spatial division.

A six-point pattern for the arrangement of points in the plane z = z; corresponds to approximation (10):
the derivative dW/9dy at the point Kimjp» Ym-0.5 zj) of the straight line y = Ym—0.5,j is determined in terms of the
values of the function W at five nodal points, three of which lie on the straight line y =y,

liney=y, .,

” and two on the straight

¥
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The difference expression of the derivative dW/dy at the point (x;

» Ym—0.57 %)) of the canonical element
is given by a formula similar to (10):

imy

"

W _ (Wimj—' Wz ,m— 1,;) hx m—!j+ (W Wi’+1 m—l,j) hx,m—l,j h,\ m—l,jhxm 1,j (12)
yi,m—0.5,j = h A A - 2% Wex, imj
ym——lj( xm—l,j+ Am—lj) ysm—1.j
Here hx m—1 _/ zm/ le m-—1 j l;cm—l WJ X +l m=1.,j xzm,/
The difference expressions for the derivatives W/ dy and a*ws ay at the nodal point (xlmj, Ymjo zj) have
the form
Wyimj yWyz m+0.5,j + (1 ) Wyi,m+0.5,j ’ (13)
W _ Wy,[,m+0.5,j - Wy.i,m—O.S,j (14)
yy.imji — - . ’
IYm+0.5,; — Ym-0.5,;
where a, = h /(h +h ).

y  Tym—lj g O
The mixed derlvanve 0“ W/ oxdy at the point (x;

substituted for W.

The difference expression for the derivative aW/azz at 12e point (xmu’ Ymjo f.+0.5) of the edge z = 2,105 of
the canonical element, which has an error on the order of hx + hy + hz, can be obtained in the following way. First,
in the plane z = Ziy the two coordinate straight lines y = Y j41 and y= Ym'+1,j+1 At the smallest distances from
the coordiate surface y = y,,; are determined if

imjr Ymj» 2)) 18 found by relations (5) and (6), where Wy is

Iym"+l,j+1 - ymjl + [ym«,j-ﬂ - ymjl = min (|yg+1,j+1 - ymjl +
+ Ygjet = Ymyl) for g=1,2,. . M-1. (15)

On the straight line y = Y j41 the two neighboring nodal points (xl o Y e /+1)
(G o Ym I+1) at the smallest distances from the coordinate surface x = Xy are found by a condition
similar to (7). We denote as z' the axis lying on the line of intersection of the coordlnalc plane x = Ximj with the
plane containing the straight lines y=y, " 41 and y= Ymj- The derivative of W, along the axis 2’ at the point of its

intersection with the plane z = Zi105 is found, just as w , using a six-point pattern for w

= y,i,m+0.5,f i m j+l’
Wy e ON the straight line y = Yo' j410 Wimp Wis 1, mpr and w;_, mj on the straight line y = Ymjt
(WT',m”,j+1 zm/) hx m',j+1 + ( T+1,m"j+1 7 zm/) h\'m g1 hx,m",j+1 hx,m”,j+1
We = &) T ) Wx,imj »
h (hxm Jr1 +h,\m1+l) 2h
— T =y ” - (0 _ " -
where by ) = Xii = X 15 om0l T X kL m et T Xims B {hz1+l T O i1 = Y]

The derivative of W " at the point of intersection of the planes x = Ximp 2= 240.5 and the plane containing

the straight lines y=1y," i+l and y = ymy is found in the same way. Finally, the derivative of Wzim,j+OV5 at the

point (xlmj, Yo j+0.5) is found from the values of the derivatives W, W, and Wyv imj
w, KD h + w, KPR, h A,
W y,m"j+1 . ymljrl Tyt Tyt o, (16)
zim.j+0.5 ypimg
hz,j+l (hy,m",j+1 + hy.m"JH) th»f“
Here A

v 41 = Ymj = Y 1o hy_m G TV et T Iy The difference expression of W, mj— 0 5 of the derivative
oW/ 0z at the point (xlmj, Yimj» Zj—0. 5) is constructed similarly. The derivatives 0W/ 9z and 9W?/9z% at the nodal

point (xl-mj, Yy j-) are approximated by the expressions
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Woimj = % Waimjros t (1 —a) Wy o055 a7

W, Jdmj = = (Wzim J+0.5 — Wzim,j+0.5)/(zj+0.5 - j—O.s) > (18)

where a, = h‘z,]— /(h + lz 1) The mixed derivatives 0>W/9zdx and 9* W/ dzoy at the nodal point (xlmj, Ymjo 2P
are determined by Eqs (5) (6) and (10), (12), (13), respectively, into which the values of W, calculated by (17)
are substituted for W.

A mathematical model of processes of the transfer of energy, mass of substance, and momentum in a
deformed body is based on the equations of thermoconcentrational elasticity {3, 4] in a quasistationary formulation,

which for constant thermophysical and mechanical parameters can be written in the form

e 2 ag grad (divd) +®,, g s=1,2,.,G, (19

uV2U + (A + u) grad (div U) = (1 + 2u/3) grad (N) + F=0. (20)

Here N is the function of variation of a specific volume of the body in its free expansion caused by variation of
temperature and concentration of components [4], N = ZSI a @5 — U50), a,=dqg/ dis/ g

Boundary conditions of heat and mass transfer of the first, second, or third kind and initial conditions are
assigned for Eq. (19). For Eq. (20) the conditions on the circuit are assigned by the displacement function U or in
the form of a vector of external stress p, the projections of which p , Py» P, 0N the axis x, y, z are related to internal
stresses by relationships of the form [4, 5]

Py = 04, COS (X, n) + 0y cos (y, n) + o, cos (z, n),

where o, = (2u + A)ou/dx + A(dv/dy + dw/09z) — (A + 2u/3)IN; o, = u(dv/dx + du/dy).
A difference approximation of Eq. (19) is constructed using a three-layer explicit difference scheme [4, 6 ]:

ﬁn+l n : n n—1
gimj — Ygimj gimj — Ygimj
ht (1 + bgimj) - ht bglm/ Z ({)sx,\ imj Dsyy,imj +
g
+9 szz, zm_/) + (I)g’ gs=112 G, gzmj =0. (21)

After an arbitrary choice of the mesh widths of the difference grid A _,,..., A, : 'hz,-, and A, the values of the

ximj® “ymjp’
parameter b, . are determined in accordance with the condition of stability of Eq. (21)

mj
bgimj = 0.5 (hy/Dyjpyy — 1) when  hy > Agpis by =0 when Ay = Ay (22)
2 2 2
Here Ay, = 1/ Ray,(1/ by + VR + 1/ R ).

Approx1mat10ns of the equation of conservation of momentum (20), solved by a time-dependent technique,
are constructed similarly in projections onto the axes x, y, and z. For projection (20) onto the axis x the
approximation has the form

un+1 _ un un _ un~1
LCALCN S Y by = (2u + A) u

uim, ) - uim
h’tu / htu /

xx,imj + 'uuyy,imj +

+ (1 + D) Vi i) — A+ 2W/3) Ny + X, buimi = 0.

+u+A W

xz,imj

(23)
The necessary condition for stability of Eq. (23) is similar to that for (22), with A, = 1/{2{Qu + A/
B2 i 1 Wi + 1/ B2

ximj

tim
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On the basis of the method of canonical elements, with allowance for the above difference approximations
of partial derivatives and differential equations, we developed an algorithm for modeling processes of transfer in
multiply connected systems of solid bodies of an arbitrary shape. The position of the boundaries of the region can
be assigned analytically or by a table of coordinates of a certain number of boundary points, on the basis of which
the coordinates of boundary nodal points and direction cosines of outer normals at these points are determined by
a special subprogram. Before calculating the grid functions, the arrays of the coordinates of nodal points of the
region, the weight parameters bl.mj, and the values of i’ and i’ for two-dimensional problems and additionally of the
values of m', m”, i/’._l , i}_l , lj + for three-dimensional problems are constructed by special subprograms.

To judge the efficiency and accuracy of the formulated technique we solved numerically, using the program
complex, some problems of heat conduction and deformation in regions with curvilinear boundaries for which an
accurate solution can be obtained. These problems include, in particular, an axisymmetric problem of heat and
mass transfer for an unbounded hollow cylinder made of a material with constant thermophysical characteristics,
which in cylindrical coordinates is reduced to a one-dimensional problem; this problem has an accurate analytical
solution under the first-, second,- and third-kind boundary conditions of heat transfer |3, 71. In the solution of
two-dimensional doubly-connected problems of transfer for a hollow cylinder ry < r < R in Cartesian coordinates,
the mesh width along the axis y was considered uniform in the regions 0 = y< R —ry, R—ry < y< R +rj, and
R + ry < y < 2R. Two nodal points lay at a small distance on the coordinate lines y=0 and y = 2R. I nodal points
lay on the remaining coordinate lines y=y,, (m =2, 3, ..., M — 1) of the difference grid. The mesh width A, was
considered uniform on the segmets 0 < y < R — ryand R + rj < y < 2R and also between the surfaces r = r, and
r = R on the segment R — rg < y < R + ry. On the straight lines y= R —ryand y=R + 1, the position of the
surface r = r, was determined by two closely lying nodal points. The mean deviation of the values of relative
temperature found numerically from an accurate analytical solution at r, = R/2, 1 = 10, M = 17 and boundary
condition of the third kind was IT = 0.41%,, and the maximum was IT__ = 2.9%; 11 =0.23% and .= 2.2% at
1 =20 and M = 33.

In adjustment of the problem and estimation of the accuracy of the results of calculation of momentum
transfer, as a standard we used an accurate analytical solution of an axisymmetric stationary problem of the stressed
state of a hollow cylinder (this state being caused by nonuniformity of the fields of temperature and concentration
of components and also by the effect of uniformly distributed pressures p, on the inner cylindrical surface of radius
r=rq and p on the outer surface of radius r = R and of a resultant force P, along the cylinder axis z), which can
be presented in the form

2 2
1 r r(d=3+rg(l+v) R
Uiry=————{(1+v) f Nrdr+ ( 2) g( ) f Nrdr +
r 1—-1/) ro R —~r r0
"VP 1 2 2 2 2 2
+ | * 5 Ir" (1 = v) (poro — PR7) + (1 + ) iyR™ (pg — P) 1, (24)
En (R” —ry) Er(R” —rp)
2 2
Iy VIR 8 (Tl S (25)
€, 2 2 rar 2 2 2 2.°
R —I'O 1'0 E R —ro EJZ (R —ro)

Here U is the function of displacement of the points of the cylinder in a radial direction; ¢, is the relative elongation
along the axis z. It should be noted that at ry = 0 relations (24), (25) are a solution of the problem of
thermoconcentrational elasticity for a solid cylinder of radius R. On the basis of the solution (24), (25) and the
corresponding conversion formulas we found the components of the vector of transfer and tensors of deformations
and stresses for solid and hollow cylinders in Cartesian coordinates.
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Fig. 1. Distribution of relative values of temperature (a) and generalized stress
{b) in an iron cylinder with two channels.

The mean error of the numerical solution of problems of momentum transfer in a hollow cylinder, when
the function U is given for the boundary points, was I1 = 0.82% at / = 10 and M = 17, and with assignment of
external stresses p, p,, and p, the error was M=429%.

Figure 1 presents, as an example, the results of calculation using the program complex of the fields of
relative temperatures 7 = (T — T, )/ (T, — T;,) and generalized stresses ¢ = o/ |E(T,,,, — T,) |- 10 in an iron
cylinder of diameter d with two channels of diameters 0.354 and 0.25d. It should bc noted that a change in the
configuration of the region leads only to reassignment of the arrays of the coordinaics of its boundary points.

Numerical experiments indicate the efficiency and high accuracy of the presented technique and the
possibility of constructing on its basis a unique program complex for simulating transfer processes in multiply
connected systems of an arbitrary configuration with variable thermophysical characteristics for arbitrary initial
and boundary conditions.

NOTATION

9, temperature or concentration of the component; U, vector of transfer with projections u, v, and w on the
axes of coordinates x, y, and z; ¢, 4, Lame coefficients; E, elasticity modulus; v, Poisson coefficient; N, function
of variation of the specific volume of the body; F, mass force with projections X, Y, and Z on the axes x, y, z; p,
vector of external stress with projections Py Py, P 0N the axes x, y,z; R, values of the radius r for the inner and
outer surfaces of the cylinder; ¢, time; hximj, hyim, hzj, h,,» mesh widths of the difference grid along the coordinate
axes x, y, z, tt; ®, density of the sources of heat and mass. Subscripts: in, inner; out, outer.
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